inventors and their inventions list pdf

Inventors and their inventions list pdf

File Name: inventors and their inventions list .zip
Size: 24075Kb
Published: 24.04.2021

Invention and Inventors.....

TOP 10 inventors of all time

Buying options

Invention and Inventors.....

The Industrial Revolution — forever changed the way people in Europe and the United States lived and worked. These inventors and their creations were at the forefront of a new society.

The spinning jenny. About James Hargreaves , a poor uneducated spinner and weaver living in Lancashire, England, conceived a new kind of spinning machine that would draw thread from eight spindles simultaneously instead of just one, as in the traditional spinning wheel. He obtained a patent for the spinning jenny in The water frame. So called because it was powered by a waterwheel , the water frame, patented in by Richard Arkwright , was the first fully automatic and continuously operating spinning machine.

It produced stronger and greater quantities of thread than the spinning jenny did. Because of its size and power source, the water frame could not be housed in the homes of spinners, as earlier machines had been. Instead, it required a location in a large building near a fast-running stream. Arkwright and his partners built several such factories in the mountainous areas of Britain. Spinners, including child laborers, thereafter worked in ever-larger factories rather than in their homes.

The spinning mule. About Samuel Crompton invented the spinning mule, which he designed by combining features of the spinning jenny and the water frame. His machine was capable of producing fine as well as coarse yarn and made it possible for a single operator to work more than 1, spindles simultaneously.

Unfortunately, Crompton, being poor, lacked the money to patent his idea. He was cheated out of his invention by a group of manufacturers who paid him much less than they had promised for the design. The spinning mule was eventually used in hundreds of factories throughout the British textile industry. Through its application in manufacturing and as a power source in ships and railway locomotives, the steam engine increased the productive capacity of factories and led to the great expansion of national and international transportation networks in the 19th century.

In Britain in the 17th century, primitive steam engines were used to pump water out of mines. In Scottish inventor James Watt , building on earlier improvements, increased the efficiency of steam pumping engines by adding a separate condenser, and in he designed a machine to rotate a shaft rather than generate the up-and-down motion of a pump. The steam locomotive. British engineer Richard Trevithick is generally recognized as the inventor of the steam railway locomotive , an application of the steam engine that Watt himself had once dismissed as impractical.

Trevithick also adapted his engine to propel a barge by turning paddle wheels and to operate a dredger. The first steam-powered locomotive to carry paying passengers was the Active later renamed the Locomotion , designed by English engineer George Stephenson , which made its maiden run in For a new passenger railroad line between Liverpool and Manchester, completed in , Stephenson and his son designed the Rocket , which achieved a speed of 36 miles 58 km per hour.

Steamboats and steamships. Steamboats and other steamships were pioneered in France, Britain, and the United States in the late 18th and early 19th centuries.

Eventually, ever larger steamboats delivered cargo as well as passengers over hundreds of miles of inland waterways of the eastern and central United States, especially the Mississippi River. The first transoceanic voyage to employ steam power was completed in by the Savannah , an American sailing ship with an auxiliary steam-powered paddle.

It sailed from Savannah, Georgia, to Liverpool in a little more than 27 days, though its paddle operated for only 85 hours of the voyage. In the early 19th century, scientists in Europe and the United States explored the relationship between electricity and magnetism, and their research soon led to practical applications of electromagnetic phenomena.

Electric generators and electric motors. The first phenomenon eventually became the basis of the electric motor , which converts electrical energy into mechanical energy, while the second eventually became the basis of the electric generator , or dynamo, which converts mechanical energy into electrical energy. Although both motors and generators underwent substantial improvements in the midth century, their practical employment on a large scale depended on the later invention of other machines—namely, electrically powered trains and electric lighting.

Electric railways and tramways. The first electric railway, intended for use in urban mass transit, was demonstrated by German engineer Werner von Siemens in Berlin in By the early 20th century, electric railways were operating within and between several major cities in Europe and the United States.

The incandescent lamp. In —79 Joseph Wilson Swan in England and later Thomas Alva Edison in the United States independently invented a practical electric incandescent lamp , which produces continuous light by heating a filament with an electric current in a vacuum or near vacuum.

Both inventors applied for patents, and their legal wrangling ended only after they agreed to form a joint company in Edison has since been given most of the credit for the invention, because he also devised the power lines and other equipment necessary for a practical lighting system. During the next 50 years, electric incandescent lamps gradually replaced gas and kerosene lamps as the major form of artificial light in urban areas, though gas-lit street lamps persisted in Britain until the midth century.

Two inventions of the 19th century, the electric telegraph and the electric telephone , made reliable instantaneous communication over great distances possible for the first time. Their effects on commerce, diplomacy, military operations, journalism, and myriad aspects of everyday life were nearly immediate and proved to be long-lasting.

The telegraph. The first practical electric telegraph systems were created almost simultaneously in Britain and the United States in In the device developed by British inventors William Fothergill Cooke and Charles Wheatstone , needles on a mounting plate at a receiver pointed to specific letters or numbers when electric current passed through attached wires. American artist and inventor Samuel F. Morse created his own electric telegraph and, more famously, a universal code, since known as Morse Code , that could be used in any system of telegraphy.

The code, consisting of a set of symbolic dots, dashes, and spaces, was soon adopted in modified form to accommodate diacritics throughout the world. A demonstration telegraph line between Washington, D. In the United States the spread of telegraphic communication through the growth of private telegraph companies such as Western Union aided the maintenance of law and order in the Western territories and the control of traffic on the railroads.

In Italian physicist and inventor Guglielmo Marconi perfected a system of wireless telegraphy radiotelegraphy that had important military applications in the 20th century. The telephone. In Scottish-born American scientist Alexander Graham Bell successfully demonstrated the telephone, which transmitted sound, including that of the human voice, by means of an electric current.

Sound waves produced near one membrane caused it to vibrate at certain frequencies, which induced corresponding currents in the electromagnetic coil connected to it, and those currents then flowed to the other coil, which in turn caused the other membrane to vibrate at the same frequencies, reproducing the original sound waves.

Watson—Come here—I want to see you. Among the most-consequential inventions of the late Industrial Revolution were the internal-combustion engine and, along with it, the gasoline-powered automobile. The automobile, which replaced the horse and carriage in Europe and the United States, offered greater freedom of travel for ordinary people, facilitated commercial links between urban and rural areas, influenced urban planning and the growth of large cities, and contributed to severe air-pollution problems in urban areas.

The internal-combustion engine. The internal-combustion engine generates work through the combustion inside the engine of a compressed mixture of oxidizer air and fuel, the hot gaseous products of combustion pushing against moving surfaces of the engine, such as a piston or a rotor. Initially expensive to run and inefficient, it was significantly modified in by German engineer Nikolaus Otto , who introduced the four-stroke cycle of induction-compression-firing-exhaust.

Soon afterward, in the early s, another German engineer, Rudolf Diesel , constructed an internal-combustion engine the diesel engine that used heavy oil instead of gasoline and was more efficient than the Otto engine. It was widely used to power locomotives, heavy machinery, and submarines.

The automobile. Because of its efficiency and light weight, the gasoline-powered engine was ideal for light vehicular locomotion. The first motorcycle and motorcar powered by an internal-combustion engine were constructed by Daimler and Karl Benz , respectively, in By the s a nascent industry in continental Europe and the United States was producing increasingly sophisticated automobiles for mostly wealthy customers.

Less than 20 years later American industrialist Henry Ford perfected assembly-line methods of manufacturing to produce millions of automobiles especially the Model T and light trucks annually.

The great economies of scale he achieved made automobile ownership affordable for Americans of average income, a major development in the history of transportation. Home List Technology. His subject areas include philosophy, law, social science, politics, political theory, and religion.

Load More.

TOP 10 inventors of all time

The Industrial Revolution — forever changed the way people in Europe and the United States lived and worked. These inventors and their creations were at the forefront of a new society. The spinning jenny. About James Hargreaves , a poor uneducated spinner and weaver living in Lancashire, England, conceived a new kind of spinning machine that would draw thread from eight spindles simultaneously instead of just one, as in the traditional spinning wheel. He obtained a patent for the spinning jenny in The water frame. So called because it was powered by a waterwheel , the water frame, patented in by Richard Arkwright , was the first fully automatic and continuously operating spinning machine.


Hans Lippershey.


Buying options

Computer, Science, Biology, Chemistry and Physics related thing invention and their inventors. Check Discovery, Inventor Lists with their names. Disclaimer- sarkariEbook does not claim this book, neither made nor examined. We simply giving the connection effectively accessible on web.

Read: Agapito Flores. This list gives important Inventions and Inventor name. Well, the answer is that there have been MANY Filipino inventions, most of which have proven significant, either to … Duncan saw the toy, liked it, bought the rights from Flores in and then trademarked the name Yo-Yo. But there are many inventions that actually work. Write some of the inventions which have brought some changes in our life.

5 comments

  • Amremenmcoc 26.04.2021 at 16:01

    Friedrich Dexler.

    Reply
  • Matilda A. 29.04.2021 at 01:04

    Already uploaded Sharma

    Reply
  • Adrien B. 29.04.2021 at 19:34

    People who discover new methods of doing things or technology which improve our lifestyle are called inventors.

    Reply
  • Allyriane L. 01.05.2021 at 07:44

    Penguin guide to jazz 11th edition pdf classic christianity bob george pdf download

    Reply
  • Ron W. 03.05.2021 at 09:06

    Evangelista Torricelli.

    Reply

Leave a reply